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Particle scattering functions P(Q) (where O represents the wave vector), have been calculated using a 
Monte Carlo method for cyclic and linear poly(dimethyl siloxanes) (PDMS) containing up to 100 

2 I/2 skeletal bonds. A maximum isfound in the Kratky plot atu (=O(s) )~2.0forcycl ic PDMS (with root- 
mean-square radii of gyration (s2) 1/2) and this is in satisfactory agreement with the analytical 
calculations of Casassa and of Burchard and Schmidt. In addition, other clearly-defined maxima are 
found at u~5.0 for PDMS ring molecules with less than ~40  skeletal atoms. These maxima are believed 
to be characteristic of small cyclic molecules as they are also predicted for small polymethylene rings. 
Comparisons are made with experimental small-angle neutron scattering (SANS) data for cyclic and 
linear PDMS. A single maximum in the experimental Kratky plot at u~2.0 is found for PDMS ring 
molecules with an average of 550 skeletal atoms. The experimental data for cyclic PDMS are in better 
agreement with the Monte Carlo calculations of P(u) than with analytical predictions up to u~2.0. 

Keywords Cyclic poly(dimethyl siloxane); linear poly(dimethyl siloxane); cyclic polymethylene; 
Monte Carlo calculations; particle scattering functions; neutron scattering 

INTRODUCTION 

Calculations of the radii of gyration 1 and shapes 2 of cyclic 
and linear poly(dimethyl siloxanes) (PDMS) have been 
described in recent publications in this series. In this 
paper, calculations are presented of the particle scattering 
function P(Q) for cyclic PDMS. A comparison is made 
with Monte Carlo calculations 3 of P(Q) for linear PDMS 
and with experimental particle scattering functions for 
cyclic and linear PDMS obtained using small-angle 
neutron scattering (SANS). In addition, P(Q) has been 
calculated for short cyclic polymethylene (PM) chains and 
the general form of this function for small ring molecules is 
discussed. 

t Present address: Unilever Research, Port Sunlight Laboratory, 
Wirral, Merseyside L63 3JW. 
* Present address: Department of Chemistry, Sheffield City Poly- 
technic, Sheffield S1 IWB, UK 

The wave vector Q is given by4-6: 

4n . 0 
Q=--~-sm~ (1) 

where 2 represents wavelength and 0 the scattering angle. 
The particle scattering function, P(Q), is related to the 
intensity of scattered radiation in the following way4-6: 

P (Q) = I (Q)/I(O) (2) 

where I(Q) is the scattered intensity at scattering vector Q 
and I(0) is the corresponding intensity when Q=0.  

P(Q) contains detailed information about the segment 
distribution of a molecule on a wide range of distance 
scales. For example, at low Q (in the so-called Guinier 

0032-3861/84/030365--04503.00 
© 1984 Butterworth & Co. (Publishers) Ltd. POLYMER, 1984, Vol 25, March 365 



Particle scattering functions in poly( dimethy! siloxanes) : C. d. C. Edwards et al. 

regime as Q(s2)m-,O) P(Q) is given by4-6:  

P ( Q ) =  I O (  '~ . 2 s2 . (3) 
3 

The average of (s 2) in equation (3) for polydisperse 
systems is only strictly the z-average if (s2)ocM ° with 
a=l.  

Hence, measurements of I(Q) as a function of Q allow 
the 'z-average' mean-square radius of gyration, (s2)=, to 
be determined when a ~ 1. In this connection, SANS has 
been used to measure 7 the radii of gyration of some cyclic 
and linear PDMS molecules in benzene-d6. The ratio 
(S2)/(S2r)= 1.9+0.2 (where 1 and r denote linear and 
cyclic, respectively) and this result is in good agreement 
with theoretical predictions s that (s3)/(s2)=2.0 for 
'flexible' polymers at the 0-point; despite the fact that 
benzene is a good solvent for PDMS. The relative 
insensitivity of the ratio (s~)/(S2r)to chain expansion has 
been discussed previously 9. 

For values of Q>> 1/(S2) 1/2, P(Q) depends on cor- 
relations between segments in the molecule which are 
separated by distances much shorter than (s2) ~/2. The 
exact isotropic expression for P(Q) is1°: 

( s i n ( Q -  r o ) ~  

P(Q) = (4) 
XXgig i 

where r~ represents the separation of segments i and j, and 
g~ and g~ are their respective contrast factors. The 
appropriate value of g for neutron scattering is given by: 

g = (p --  pro) 2 (5) 

where p (= Yb/v) and Pm are the scattering length densities 
of a segment and of the background medium, respectively. 
Eb is the total scattering length of a segment and v is its 
volume. The latter may be obtained from experimental 
densities or van der Waals radii. Values of b for commonly 
occurring nuclei are given elsewhere 6. 

Previous approaches to the calculation of P(Q) for ring 
molecules have used analytical methods. Casassa t~ and 
Burchard and Schmidt tz assumed that for sufficiently 
large rings, the segmental pair distribution function differs 
from that of a Gaussian chain only in that the first and last 
segments are joined together. Hence, the pair distribution 
function can be represented by the convolution of two 
Gaussian distributions for the subehains connecting any 
pair of segments. This method gives rise to the following 
expression ~ ~, t 2. 

P(u) = (2t/2/u)~(u/2t/2). (6) 

where u=Q(s2) 1/2 and ~(x) denotes the Dawson 
integral, which is tabulated in ref. 13. The corresponding 
expression for a Gaussian chain was first derived by 
Debye ~ 4: 

P(u) = -~z (u 2 -  1 + e -~) (7) 
U -  

Equation (6) predicts a maximum in the Kratky plot 
(u2.P(u) versus u) at u=2.15, as shown in Figure 1. As 
u---~oo, the normalized Kratky plots for cyclic and linear 
species according to equations (6) and (7) tend to asymp- 
totic limits of 1.0 and 2.0, in accord with (s~)/(s 2) = 2.0. 
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Figure I Normalized Kratky plots of u2.p(u)  versus u, where 
u = Q ( s 2 )  1/2 (see text), calculated for PDMS molecules at 298 K 
with the numbers of skeletal atoms indicated. Ratio of contrast 
factors gi/gi=O.135. Cyclic PDMS is denoted R, linear PDMS is 
denoted L. - . . . .  , the Gaussian approximation to P(u)  for cyclic 
PDMS using equation (6); . . . .  , the Gaussian approximation to 
P(u)  for linear PDMS using equation (7) 

IOOL 

This paper reports the results of calculations of P(Q) for 
cyclic PDMS molecules containing up to 100 skeletal 
bonds. The calculations used equation (4) and a 
Monte Carlo method, which employs Metropolis 
sampling 15"16 as described in ref. 1. 

The ring molecules generated are not perfect rings in 
that they comprise that fraction of chain conformations* 
with end separations which are less than 2 A ~,2. This 
imperfection has been discussed previously, and can be 
assumed to be unimportant in the following calculations. 
However, it is noted that it may be important in the 
calculation of properties which depend on sums of bond 
vectors (for example, dipole moments). For PDMS, the 
calculations used the rotational isomeric state model 
(RISM) developed by Flory, Crescenzi and Mark t7 to 
describe the statistical conformations of the chain. Si- 
milarly, for PM the RISM used was that developed by 
Abe, Jemigan and Flory ~ s. Scattering centres were taken 
as being situated on atoms in the molecular backbone and 
appropriate values of the contrast factors gi and g~ were 
used. The effective centre of the -Si(CHa)2- scattering unit 
in PDMS molecules is slightly offset from the skeletal 
atom, but it has been shown 3 that this produces a 
relatively small effect at high values of Q and it is not taken 
into account here. 

COMPUTATIONAL RESULTS AND DISCUSSION 

Normalized Kratky plots (u 2 . P(u) versus u) for cyclic 
PDMS molecules at 298 K containing 40-100 skeletal 
bonds are shown in Figure 1, together with the plots 
predicted by equations (6) and (7). The latter are inde- 
pendent of chain length. The ratio of the contrast factors 
used corresponds to PDMS in benzene-d6, the solvent 
employed in ref. 7. 

There is an essentially common maximum in the 
calculated Kratky plots for cyclic PDMS at u ~ 2.0. This is 
in reasonable agreement with Cassasa tt and Bun:hard 

* The term 'conformation' is used to specify the shape of a molecule, in 
keeping with the earlier papers of this ==tics 
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and Schmidt's 12 prediction of a maximum at u = 2.15 for 
Gaussian tings. However, the maximum is less pro- 
nounced than that predicted by the analytical method and 
the plots do not attain the limiting value of 1.0, as u--,oo. 
In addition, the plots for linear PDMS do not attain the 
expected asymptotic limit of 2.0. This reflects deviations 
from the Gaussian statistics assumed in the derivation of 
equations (6) and (7). Although the pair distribution 
function W(ru) may be Gaussian for large separations li-jl 
for both linear and cyclic molecules (i.e. at low Q), this 
approximation fails for small values of Ii-jl, resulting in the 
observed discrepancies at high Q in Figure 1. 

In addition, as shown in Figure 1, cyclic PDMS with 40 
skeletal atoms displays a second maximum in the Kratky 
plot in the region u = 5.0. This is not shown by the rings 
with 50 or more skeletal atoms. Calculations of P(Q) were 
extended to higher values of Q for PDMS rings with 12-26 
skeletal atoms. The results of these calculations are shown 
in Figure 2 and demonstrate that second maxima again 
occur with these smaller rings in the region u~5.0. 
Furthermore, the maximum is most pronounced for the 
PDMS ring with 22 skeletal atoms, suggesting that this is 
another illustration of the special character of this parti- 
cular PDMS ring molecule. Previously 2, it has been noted 
that the all-trans low-energy conformation of the PDMS 
chain with 22 skeletal atoms corresponds to a planar loop, 
which is a consequence of the unequal skeletal bond 
angles of the oxygen and silicon atoms. This results in 
special disc-like shapes which dominate the confor- 
mational statistics of PDMS rings in the region n ~ 22. 

To explore this feature further, calculations of P(Q) 
were carried out for short polymethylene (PM) rings. The 
results shown in Figure 3 demonstrate that maxima 
corresponding to those observed for cyclic PDMS occur 
for cyclic PM at the same values of u. However, the second 
maxima for cyclic PM are less pronounced and show no 
enhancement at n ~ 22 as expected because the low-energy 
all-trans conformation for PM is linear. 

Thus, the results show that small cyclic molecules have 
a special annular character whether they be PDMS or 
PM tings. This character becomes less pronounced with 
increasing ring size. In the limit of infinite chain length, the 
only distinctions between a cyclic molecule and the 
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Figure 2 Normalized Kratky plot of u2.p(u) versus u calculated 
for  small PDMS rings at 298 l with the numbers of skeletal 
atoms indicated. Q,/Q..=0.135 
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Figure 3 Normalized Kratky plot of u 2. P(u) versus u calculated 
fo r  small PM rings at 298 K with the numbers of skeletal atoms 
indicated 

equivalent linear molecule are the markedly increased 
segment density and the slightly more spherically sym- 
metrical segment distribution of the cyclic species 2. 

COMPARISON WITH EXPERIMENTAL DATA 

Neutron scattering measurements were carried out at 
AERE, Harwell, UK using the small-angle diffractometer. 
Values of the wave vector Q were in the range 
0.024 < Q < 0.20 A-1. PDMS solutions in benzene-dr at 
concentrations of ~5% wt/wt were contained in 2mm 
quartz cells. The ambient temperature was approximately 
296 K. Scattered intensities were corrected for incoherent 
background scattering by subtracting the scattered in- 
tensity of mixtures of benzene and benzene-dr with the 
same total scattering length density as the solutions. The 
intensities were then normalized to the incoherent scatter- 
ing from pure water. 

Cyclic and linear PDMS fractions with number- 
average molar masses of 2.14x104gmo1-1 and 
2.13 x 104 g mol- 1, respectively (corresponding to ~ 550 
skeletal bonds) and with heterogeneity indices (Mw/M,) of 
1.09 were prepared and characterized as described in 
previous papers of this series (see for example, ref. 19). 

In Figure 4, the experimental normalized Kratky plots 
of u2.1(u) versus u at 296 K are shown for the cyclic and 
linear PDMS together with plots calculated using equa- 
tions (6) and (7). Also shown in Figure 4 is the curve for 
cyclic PDMS with 100 skeletal bonds, calculated using 
equation (4) and the Monte Carlo method. The calculated 
curves were evaluated in terms of u2p(u) and converted to 
values of u2l(u) by multiplying by a constant factor of 2.6 
which is equal to the ratio of the experimental value of 
u2I(u) at high u for linear PDMS to the Gaussian 
asymptotic value of 2.0. In addition, values of the 'z- 
average' radii of gyration (s2}~/2 have been chosen to 
yield the best agreement between the experimental data 
and the calculated plots at low u. The values of (s 2) ~/2 and 
(s2)~z/2 obtained in this way are 25 _+4 A and 36 _+4 A for 
the cyclics and linears, respectively, giving a ratio 
(s2)z/(sZ~)z=2.1_+0.3. These values can be compared 
with those interpolated from previous experimental 

2 1/2 measurements 7 at low Q, viz (sr}~ = 2 9 A  and 
(S?)zl/2 = 40 A. 
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Figure 4 Normalized Kratky plots of u2.1(u) versus u for linear 
and cyclic PDMS. The experimental data for the linear 
(M,=2.13 x 104 g mo1-1) and cyclic (Mn=2.14x 104 g mo1-1) 
fractions are denoted + and x, respectively. - - ,  calculated for 
linear PDMS using equation (7) and normalized to the same 
asymptotic limit as the experimental data (see text); . . . . .  , 
calculated for cyclic PDMS using equation (6) and assuming that 
(s2>/<~r)=2.0; . . . .  , calculated using equation (4) and the 
Monte Carlo method for a lO0-bond PDMS ring and reproduced 
from Figure 1 

There is good agreement between the experimental 
data for linear P D M S  and the plot obtained using 
equation (7), over the complete range of u. The agreement 
between the experimental data and the curve given by 
equation (6) which is based on Gaussian statistics is not so 
good. However, the experimental data for cyclic PDMS 
agree well with the curve calculated for a 100 bond ring 
using the Monte Carlo method up to u ~ 2. The calculated 
curve then exhibits a shallow minimum which is not 
shown by the experimental data. This may be due to the 
polydispersity of the sample, for the Monte Carlo calcu- 
lations show that P(u) is sensitive to ring size in this region 
of u. 

Further experimental SANS studies of cyclic and linear 
P D M S  are in progress. It is hoped that the theoretical 
treatment developed here will prove useful in the in- 
terpretation of the data obtained. 
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